CSE Working Paper
2018-4

The Evolution of India’s Industrial Labour Share and its Correlates

Arjun Jayadev and Amay Narayan
March 2018
The Evolution of India’s Industrial Labour Share and its Correlates

Arjun Jayadev and Amay Narayan

Abstract

There has been substantial recent interest in the decline of labour shares across countries. For the most part, attention has been focused on developed countries. We examine the evolution of India’s labour share in its formal industrial sector from 1983-2014. Using two datasets corresponding to sectoral aggregate data and plant-level data respectively, we document a secular decline in the labour share across all sectors from 1983, with a stabilisation at very low levels (around 8 to 10 percent) starting around 2005. We then use the plant-level data to identify the reasons for the overall decline in the labour share. We find strong evidence to support multiple causes: increased capital intensity, greater informalisation, greater privatisation, and productivity increases in larger firms. As such, we suggest that the declines in labour share experienced are due to a composite set of factors. Conversely, other potential explanations (for example, regional variation in the labour share) have less explanatory power.
Introduction and Motivation

The labour income share reflects how much of national value added accrues to labour as opposed to capital. In recent times, there has been a revival of interest in the evolution of the labour share across countries. Much of this has been inspired by the prolonged decline in the fraction of income going to labour in the OECD countries beginning around 1980 after a long period of relative stability. While there has been concern about growing interpersonal inequality for a substantial period of time, the return to analyzing the share of an economy's national income which accrues to labour reflects the revival of a classical concern: whether the return to owning capital exceeds the returns to labour. If productivity gains do not translate into higher wages, this provides insight into the ways in which power dynamics or the nature of technology in the economy translate into differing outcomes for different classes of people. Indeed a common narrative suggests that political and economic changes beginning in the last great crisis of capitalism in the 1970s led to a regime of accumulation that has worked to the detriment of labour as a class. It has involved a transfer of power, influence and economic advantage to capital across a range of policies (for example in terms of allowing capital mobility, lowering taxes on capital and so on).

Many empirical exercises have been undertaken to unpack the decline in labour shares in developed countries, including technology (see among others [Bentolila and Saint-Paul, 2003; Poterba, 1997] and global integration [Jayadev, 2007; Guscina, 2006]). Other, more recent efforts have focused on the role of privatisation [Azmat et al., 2012] or the role of imperfect competition and the rise of 'superstar' firms which have lower than average labour shares and which also account for a larger share of output than in the past. [Autor et al., 2017].

One might have expected that these declines in labour shares are concentrated in the industrialised world and that the story in developing countries may be different since there has been both rapid growth and attendant structural change in the developing world aduring this period. More recent research suggests however that on average labour shares have declined in developing economies as well (see [Rodriguez and Jayadev, 2013; Karabarounis and Neiman, 2013; Dao et al., 2017], among others). This in turn points to the possibility of common features and drivers across the world.

Measuring the national labour share of income in developing countries has been hampered because of the fact of both poor quality data and inherent ambiguity in the definition of the labour share in a context of large scale self-employment (the output of which could equally be attributed to labour or income). While some have tried to undertake adjustments using UN SNA accounts (for an example, see [Van Treeck, 2017]).

1 There is, additionally some controversy as to whether the decline in labour share of GDP could be due to measurement issues such as the treatment of depreciation, housing or self employment [Elsby et al., 2013; Gallin, 2002].
In this paper we adopt a different tack and instead look at labour share in a developing economy, India, in the sector that constitutes unambiguously wage employment: the formal industrial sector. In doing so, we avoid the thorny questions of accounting for self-employment and other related concerns. We examine the evolution of the industrial labour share in India using two distinct but related datasets, the Annual Survey of Industries 3-digit level dataset (corresponding to sector-level data) and the Annual Survey of Industries 5-digit level dataset (corresponding to plant-level data) that constitute the formal sector. While this refers to a small fraction of the overall labour force, our hope is that by focusing on this area we can more carefully examine both the trends in the labour share and its correlates in a context in which it has not been adequately studied before.

Our contribution is threefold. First, we confirm that the global decline in labour share is also observed in India in this sector of the economy. Since 1980, the industrial labour share has declined by over 20 percentage points. Most of this decline occurred by 2007 after which the labour share has been very low but stable. We then establish that while the majority of decline in the labour share was accounted by within industry declines, using the more disaggregated data, we find that between-factory effects dominate after the mid 2000s. We then turn to the 5-digit data to identify plausible correlates of the labour share and find evidence for multiple channels that are common in the literature.

While our paper is, we believe, relatively novel in this focus, we are not the first to use this data. The paper that is closest to ours in spirit is Kapoor [2016] who provides a similar analysis using ASI 5 digit data We differ here by concentrating on the correlates of the labor share as opposed to examining labor intensity, by substantially expanding the time period under question, and by identifying a larger set of correlates than this previous work. Other related work includes Goldar and Aggarwal [2012].

Data

Our longer time series data (the ASI 3 digit data) was acquired from the Economic and Political Weekly Research Foundations (EPWRF) India Time Series database. Aggregated at the 3-digit industry level, this concorded series from the EPWRF gives us a relatively comprehensive view of trends in the industrial sector across the country. Conducted by the Central Statistics Offices (CSO) Industrial Wing, under the Ministry of Statistics and Programme Implementation (MOSPI), the ASI covers the industrial sector across the entire country. The frame contains all factories classified as per the Factories Act, 1948. The factory-level data is then aggregated at various levels. The first dataset is aggregated at the 3-digit industry level and consists of just under 3200 industry-year observations spanning 41 years and 65 industries. Industries are classified according to MOSPIs National Industrial
Classification (NIC) codes. Our shorter, but more disaggregated, time series data is an unbalanced panel of over 800,000 factory-year observations for over 1700 5-digit industrial sectors. Unfortunately, the data is only available from 2000 to 2014. Data provided in both datasets include balance sheet measures such as fixed and working capital, income statement measures such as wages and salaries paid, and other statistics on employment and production. For the most part, we work with the latter dataset since it provides more variables to use and on which to test the various hypotheses.

Our key variable of interest, the labour share of income, is defined as the ratio of wages and salaries to value added by the industry (in the case of the 3-digit data) or the factory (in the case of the 5-digit data). Hence by definition, the labour share should always be between 0 and 1. However, since gross value added is not reported directly by firms or factories, we constructed this measure by subtracting the value of total inputs from the ex-factory value of output. We ensured that we used theoretically consistent measures of the labour share by excluding observations that had wage shares greater than 1. Any negative values for value added were replaced by the ex-factory value of output. We also top-coded and bottom-coded our capital intensity measure, by dropping outliers below the 1st percentile and above the 99th percentile. Any anomalous, negative values for capital intensity were dropped beforehand.

Figures 1a and 1b provides evidence of the long term decline in the labour share in both datasets.

![Aggregate Wage Share: 1983-2014](image)

Figure 1a: Aggregate Wage Share 1983-2014 (3-digit Level)
An important consideration in assessing the reasons for the decline in the labour share is the extent to which the declines are driven by between-firm reallocation rather than a fall in the labour share within firms. For example, if the main reason for the fall in labour share is the decline in the bargaining power of labour across the economy, one should expect to see within-firm effects dominate. If on the other hand, the main reason has to do with some firms or sectors growing in size and also having below average labour shares, one should expect between-firm effects to dominate.

Figures 2a, 2b and 2c provide some indication of the dominant effects for both of the datasets. With the longer time frame provided by the ASI 3D data it is clear that at that level of aggregation, there have been declines in virtually all industries, strongly suggesting some economy-wide patterns at play. The shorter time span ASI 5D data suggests two distinct periods: one between 2000 and 2007 in which most factories saw declines and a period after 2007 in which there is no such strong pattern.
Figure 2a: Industry-level Change in Wage Share 1983-2014 (3-digit Level)

Figure 2b: Industry-level Change in Wage Share 2000-2007 (5-digit Level)
There are two ways in which one can assess the relative contribution of a between or within effect. A common approach is to carry out a shift-share decomposition [Syrquin, 1984; Timmer and Szirmai, 2000]. However, given the fact that for the 5-digit data data are uneven, as it is an unbalanced panel, interpreting a shift share decomposition is difficult. Instead we adopt a much simpler, but indicative regression as a benchmark to compare the contribution of labour share declines. This involves estimating two equations for the dataset where the data is in a panel form of factory \((i=1...n)\), sector \((j=1...n)\), and year \((T=1...t)\). We keep only two years for comparison of the effect \((T=0,1)\). We then run the two following regressions weighting each sector \(j\) by the weight of its wage bill in the overall wage bill for each sector-year.

\[
LS_{ij} = \beta_{0ij} + \beta_{1} T_{ij} + \epsilon_{ij} \quad \text{(Equation 1a)}
\]

\[
LS_{ij} = \beta_{0ij} + \beta_{1} T_{ij} + c_{j} + \epsilon_{ij} \quad \text{(Equation 1b)}
\]

Equation 1a measures the overall average change in the labour share for industry \(i\) between the first year and last year. \(\beta_{1}\) includes between-industry, within-industry, and interaction effects, weighted by output.

Equation 1b undertakes the same regression but now controls for between-industry differences by introducing industry dummies \(c_{j}\). As a result, \(\beta_{1}\) now represents only average within-industry changes in the labour share.
Table 1 provides the result of these regressions for the 5-digit data, divided into 2 periods, from 2000 to 2007 and from 2007 to 2014. As is evident, there is a strong negative trend between 2000 and 2007, and over half the effect can be attributed to within industry declines. By contrast, between 2007 and 2014, there is no trend in the labour share of income.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall</td>
<td>Within</td>
</tr>
<tr>
<td>Period 1</td>
<td>-0.821***</td>
<td>-0.436***</td>
</tr>
<tr>
<td></td>
<td>(-3.28)</td>
<td>(-6.64)</td>
</tr>
<tr>
<td>Period 2</td>
<td>0.101</td>
<td>0.256</td>
</tr>
<tr>
<td></td>
<td>(0.41)</td>
<td>(1.64)</td>
</tr>
<tr>
<td>Observations</td>
<td>134</td>
<td>134</td>
</tr>
<tr>
<td>t-statistics in parentheses</td>
<td>* p < 0.10, ** p < 0.05, *** p < 0.01</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: ‘Between-Within’ Regression: Equation 1a and Equation 1b

Regression Model

In this section, we identify and test four different channels that are identified in the literature as key to the evolution of the labour share of income.

- **Technology.** A key determinant of the labour share in the literature is the nature of the technology in the economy. With capital accumulation and growth, if the production technology is such that the elasticity of substitution σ is greater than one, higher (K/L) ratios will result in lower labour shares of income [Poterba, 1997]. A similar argument is favored by Karabarbounis and Neiman [2013] who argue that improvements in Information and Communication Technologies (ICT) have resulted in lower relative capital prices. Again, with a if the capital-labour elasticity of substitution is greater than one, this will lead to lower labour shares\(^2\). In order to test for this we use the ratio of fixed capital to total mandays as as the explanatory variable.

- **Azmat et al. [2012]** argue that *privatisation* reduces labour’s share since the profit motive means that the incentives of managers move away from objectives such as job protection or ‘creating an empire’ towards because it shifts the incentives of senior managers towards shedding labour and increasing productivity. We use data on whether a firm is listed as private or public to test this channel.

\(^2\)It should be noted that most of the literature suggests that the elasticity of substitution is less than one [Chirinko et al., 2011; Lawrence, 2015; Oberfield and Raval, 2014; Antras, 2004; Hamermesh, 1996]. For a comprehensive note on the relationship between the elasticity of substitution and factor shares, see Chirinko and Mallick [2014]
Another common determinant of declines in labour share is the weakening of the organisational strength of unions and/or the adoption of employment policies that reduce employment protection. Given the fact that India’s labour force is not heavily unionised, the main way in which employment protection can be reduced is a widespread informalisation of labour. Production workers in India’s manufacturing sector are of two kinds: those having employment protection and benefits who are termed ‘permanent’ and those hired from outside contractors who are not eligible for such protections (called ‘contract’ workers). In the last two decades, there has been a secular increase in the latter. There is evidence that informalisation of the formal labour force is increasingly a concern in India [Sengupta et al., 2009]. Several reasons have been provided for this increase in informalisation, Goldar and Aggarwal [2012] argue for example that import competition forces movement towards a low labor protections regime in order for firms to remain competitive. A more prominent and often cited argument is that labor laws, and in particular the Industrial Disputes Act have worked as a deterrent on formalisation since onerous labour regulations work as a disincentive to formal labor hiring (For a contrary view see ?). The ASI 5-digit level data allows us to directly test for the effect of informalisation on the labor share since it includes data on contract workers3.

Finally, a newer, but important explanation provided by Autor et al. [2017] is that much of the decrease in the labour share in the US and other developed countries can be explained by the rise of ‘superstar’ firms with high profits and a low share of labour in firm value-added and sales. These firms are able to reduce costs and produce a larger part of the overall value simultaneously, implying that as an industry comes to be dominated by such firms, this could come with lower labor costs. Thus if a superstar firm’s share of output in the industry in which it increases, one might expect that the labour share within the firm would rise. We proxy for this by using the share of a firm’s value added in the industry’s value added as indicative of a ‘superstar’ firm .

One explanation that is conspicuous by its absence is any variable to control for global integration. We had wished to try and use the degree of de facto trade integration or measures of protection for various industries. Unfortunately however, the ASI data is classified according to the National Industry Classification while trade data is classified using the HS6 system. While there are bridges available, the NIC code used in the dataset change over time, and therefore the existing bridges which might be used are prone to be full of errors.

This is a task for further research.

3[Kapoor, 2016] explores this relationship centrally as well. As she notes, ‘[T]he increase in contract workers accounted for about 47% of the total increase in employment in the organised manufacturing’ from 2001-2011’
Table 2 provides unweighted summary statistics for the variables of concern, while Table 3 provides the same statistics except now the data is weighted by gross value added. Both tables provide the summary statistics over the entire time period, as well as for two sub-periods (2000-2007 and 2008-2014). An interesting point to note is that in the unweighted data, the mean wage share is over 30%, which would at first glance seem at odds with the aggregate trend observed in Figure 1b. This is a compositional effect due to the existence of a large number of very low-output factories with high wage shares. As soon as we account for this by weighting the data, as in Table 3, the mean wage share is below 8%.

Figure 3 provides the trend in the total number of factory employees over time. Figures 4a, 4b and 4c provide some visual evidence of the relationship between these explanatory variables and the wage share. In each case, the variable is the residual of the variable after controlling for industry fixed effects. This is done since the initial level of capital intensity, contract share and size differ widely by industry type. The figures provide some prima facie evidence that of some co-evolution between the variables.

<table>
<thead>
<tr>
<th>Period</th>
<th>Wage Share</th>
<th>Capital Intensity</th>
<th>Relative Size</th>
<th>Contract Workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-2014</td>
<td>Mean 30.3%</td>
<td>425311</td>
<td>0.25%</td>
<td>50.8%</td>
</tr>
<tr>
<td></td>
<td>Median 25.8%</td>
<td>200325</td>
<td>0.02%</td>
<td>50.4%</td>
</tr>
<tr>
<td></td>
<td>SD 21.5%</td>
<td>699129</td>
<td>2.22%</td>
<td>27.9%</td>
</tr>
<tr>
<td></td>
<td>N 464370</td>
<td>291760</td>
<td>508424</td>
<td>185275</td>
</tr>
<tr>
<td>2000-2007</td>
<td>Mean 30.3%</td>
<td>310910</td>
<td>0.23%</td>
<td>49.5%</td>
</tr>
<tr>
<td></td>
<td>Median 25.5%</td>
<td>146629</td>
<td>0.01%</td>
<td>48.5%</td>
</tr>
<tr>
<td></td>
<td>SD 21.7%</td>
<td>552825</td>
<td>1.89%</td>
<td>28.4%</td>
</tr>
<tr>
<td></td>
<td>N 227058</td>
<td>137394</td>
<td>250924</td>
<td>81086</td>
</tr>
<tr>
<td>2008-2014</td>
<td>Mean 30.3%</td>
<td>527119</td>
<td>0.26%</td>
<td>51.9%</td>
</tr>
<tr>
<td></td>
<td>Median 26.0%</td>
<td>265698</td>
<td>0.01%</td>
<td>51.8%</td>
</tr>
<tr>
<td></td>
<td>SD 21.3%</td>
<td>793557</td>
<td>2.50%</td>
<td>27.5%</td>
</tr>
<tr>
<td></td>
<td>N 237313</td>
<td>154366</td>
<td>257500</td>
<td>104189</td>
</tr>
</tbody>
</table>

Table 2: Summary Statistics (5-Digit): Unweighted
<table>
<thead>
<tr>
<th>Period</th>
<th>Wage Share</th>
<th>Capital Intensity</th>
<th>Relative Size</th>
<th>Contract Workers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>7.6%</td>
<td>1706321</td>
<td>8.3%</td>
</tr>
<tr>
<td>2000-2014</td>
<td>Median</td>
<td>2.6%</td>
<td>852333</td>
<td>3.4%</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>11.5%</td>
<td>1866948</td>
<td>13.0%</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>464371</td>
<td>259000</td>
<td>504959</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>8.9%</td>
<td>1185386</td>
<td>7.2%</td>
</tr>
<tr>
<td>2000-2007</td>
<td>Median</td>
<td>4.3%</td>
<td>507215</td>
<td>3.0%</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>12.3%</td>
<td>1486183</td>
<td>12.4%</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>227058</td>
<td>122434</td>
<td>248880</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>7.2%</td>
<td>1905213</td>
<td>8.7%</td>
</tr>
<tr>
<td>2008-2014</td>
<td>Median</td>
<td>2.1%</td>
<td>1026174</td>
<td>3.5%</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>11.3%</td>
<td>1956988</td>
<td>13.2%</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>237313</td>
<td>136566</td>
<td>256079</td>
</tr>
</tbody>
</table>

Table 3: Summary Statistics (5-Digit): Weighted

Figure 3: Total Number of Employees in Sample
Figure 4a: Mean Wage Share vs Mean Capital Intensity

Figure 4b: Mean Wage Share vs Mean Contract Worker Share
In order to formally test for these effects we estimate the following regression using the 5-digit data:

$$LS_{it} = \beta_0i + \beta_1 KL_{it} + \beta_2 PVT_{it} + \beta_3 SIZE_{it} + \beta_4 INFO_{it} + c_{it} + \epsilon_{it}$$ \hspace{1cm} \text{(Equation 2)}

where

- LS_{it} = Logged wage share of factory i at time t.
- PVT_{it} = Dummy variable signifying if a factory is publicly or privately owned.
- $SIZE_{it}$ = Logged share of the factory’s output vis-à-vis its industry’s output.
- $INFO_{it}$ = Logged share of contract worker days in the factory’s total mandays.

We consider additional controls to deal with unobserved heterogeneity. Specifically, we include a full set of industry and year fixed effects (c_{it}) intended to capture a variety of factors such as the quality of workers and any time specific impacts that may arise (for example due to the business cycle), and an error term (ϵ_{it}). Data is weighted using the weights provided within the ASI.

Table 4 provides the result of the regression. In accordance with the theory and extended literature mentioned here, we find sizeable and statistically significant relationships between the explanatory variables and the labour share. Increases in capital intensity, privatisation,
relative size, and informalisation at the factory level are all associated with declines in the wage share. Our log-log regression model allows for fairly straightforward interpretation of the coefficients; a 1% increase in capital intensity is associated with a fall in the wage share of approximately a fourth of a percentage point. A 1% increase in the relative size of a factory unit’s output within its industry is associated with a fall in the wage share of $\sim0.12\%$, and the corresponding figure for an increase in the fraction of contract workers in the factory’s workforce is also $\sim0.12\%$. The change in the wage share associated with the privatisation indicator shifting from 0 to 1 is $100 \cdot (e^{\beta_2} - 1)$, which translates to -10.06%.

<table>
<thead>
<tr>
<th></th>
<th>Wage Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(K/L)</td>
<td>-0.245***</td>
</tr>
<tr>
<td></td>
<td>(-97.36)</td>
</tr>
<tr>
<td>Private Indicator</td>
<td>-0.106***</td>
</tr>
<tr>
<td></td>
<td>(-8.44)</td>
</tr>
<tr>
<td>Log(Size)</td>
<td>-0.120***</td>
</tr>
<tr>
<td></td>
<td>(-79.65)</td>
</tr>
<tr>
<td>Log(Informalisation)</td>
<td>-0.119***</td>
</tr>
<tr>
<td></td>
<td>(-32.97)</td>
</tr>
<tr>
<td>Observations</td>
<td>95345</td>
</tr>
</tbody>
</table>

t statistics in parentheses $^* p < 0.10$, $^{**} p < 0.05$, $^{***} p < 0.01$

Table 4: Regression results from estimating Equation 2

Regional Variation

A potential alternative explanation for the decline in the labour share is geographical disparities. If for instance, production and value added was shifting increasingly to low wage share states, the aggregate wage share would decline.

Figure 6 on page 17 shows that in fact, there is very little variation in trends and levels of the state-level wage share. While there exist a few states which experienced more dramatic changes in the wage share (e.g. Manipur, Nagaland), these are usually smaller states with very little share in the overall value added in the country. As such, regional redistribution of production does not seem prima facie to be another plausible explanation for the decline in the aggregate wage share.

In addition to this, we use a ‘labour market rigidity index’ created by Gupta et al. [2009] to examine differences in labour share trends by states with ‘flexible’ vs. ‘inflexible’ labour market regimes (LMR). Figure 5 plots the wage share by these two categories. While states
with inflexible LMR initially did have a higher wage share compared to states with flexible LMR, there is a clear convergence and the difference has all but vanished by 2005. Once again, this suggests that the phenomena of declining labor shares is a pan-India phenomenon.

Figure 5: Change in Wage Share by States (Flexible vs Inflexible LMR)

Discussion and Conclusion

We have here provided some description of the evolution of and determinants of the industrial labour share in India. The most striking feature has been the long term decline from around 30% in the 1980s to below 10% now. Like in other economies, capital intensive technology, industrial organization towards more output being produced by low labor cost firms and the reduction in bargaining strength of labor are all robust correlates of this decline. We have made here no attempts at attempting to establish casuality, and suggest here broad correlations that have plausible theoretical bases.

It should be remembered that here we are talking about a small part of India’s labour force, and indeed a small part of India’s industrial labour force. The vast majority of workers, even in industry are not captured by these surveys. That noted, we believe that our exercise still provides some illumination and some sobering considerations for policy makers. First,
given that these data are from the formal sector, they are likely to reflect that part of the industry where the conditions of work and the labor-capital bargain are most favorable for workers. Moreover, it represents the majority of the value added in the Industrial sector. In the larger informal sector, while the labor share might be higher (given that capital intensity is likely to be lower), the quality of jobs is likely to be much worse. The firms represented in the ASI are therefore a benchmark for desirable jobs available (in the industrial sector at least) for the large and growing Indian labor force.

Moreover, the decline in India’s labour share runs counter to the typical trajectory with development first noted by Kravis [1962] and Kuznets and Murphy [1966] who suggested that the process of development and the attendant structural change, as labour moved out of agriculture into organised wage labor, urbanization and demographic changes, would serve to increase the labour share. Indeed, Ortega and Rodriguez [2001] find that in general manufacturing labour shares increase with the level of income of a country, while Jayadev [2007] finds that labour shares economy-wide do so as well. India’s decreasing labour share during a period of very rapid growth is then at least a little puzzling.

In the last decade or so, various governments have rightly identified weak labour markets and lack of employment opportunities as a key concern for the Indian economy. Our analysis provides additional reason for concern. We show that, at least in the formal sector, workers have seen wages going substantially slower than productivity (hence the fall in wage share) - a process that will also serve to increase inequality. At the current juncture, workers obtain less than a tenth of the gross value added as compensation. While we have provided some indication of some proximate correlates, we do not by any means suggest that these are exhaustive (indeed, we have reason to believe that at least one key channel - internationalization, is missing in our explanation). Future work might incorporate this and other concerns in designing interventions and policies.
Figure 6: State-wise Change in Wage Share 2000-2014 (5-digit Level)
Bibliography

Van Treeck, K. (2017). The labor income share in developing countries: A review and analysis of international panel data.